Malware Analysis: Citadel

2012.12.14

AhnLab ASEC (AhnLab Security Emergency response Center)
Analysis Team

The following is a detailed analysis report of the malware Citadel. As with similar malware such as Zeus and
SpyEye, Citadel functions as an agent that sets up a botnet and an info-stealer that extracts authentication data.
Citadel is also a bot agent that downloads and executes files to install a variety of malware

AhnlLab

1. Similarity between Citadel and Zeus

A. Overview

The Citadel Trojan is malware created by a malicious code generating program. It is very similar to the
Zeus Trojan in terms of logical structure as well as physical data. This means Citadel is also designed to
steal personal information used in financial transactions likes Zeus did. Moreover, it allows attacker do
DDosS that paralyze large-scale systems and infrastructure, because Zeus and Citadel basically constructs
the extensive botnet that consists of large number of infected computers. In addition, the attacker can
arbitrarily execute any malicious codes such as ransomeware and scareware on the infected computer
that has already installed bot agent(Backdoor).

The dangers of the Citadel Trojan have been brought into the limelight from the start of 2012. It is known
to have been created based on the source code of Zeus. A number of malware (Citadel, Gameover Zeus,
Ice IX, Licat, Murofet) have been created after the source code of Zeus was made public, but the team
creating Citadel is the most organized and continuing to provide service among them.

B. Similarities

Consist of Citadel Malware Binary (Function)

187
/ 7 Zeus's Source Code: common

B Zeus's Source Code: client
¥ Citadel's Code

Fig. 1. Code-level Similarity: Citadel vs. Zeus
Citadel (bot agent) is 213,504 bytes and made up of 762 functions. Citadel shares 575 identical
functions with the Zeus source code. Of those, 318 are designed to mimic the function of the Zeus source

code and the other 257 are utility routines such as strings, memory, network and encryption.

In short, Citadel physically matches Zeus by approximately 75%. The other 25% of routines consist of

new manage functions(e.g. Main, Initialization and Finalization), new encryption libraries and utility
functions.

2. Citadel: Common with Zeus

A. Citadel Malware Installation

@ Create Process

(Suspend)
dropper (child)

@ Create PE Image
(from Resource Data)

@ Copy to %AppData%\random\random.exe

® Create Process
(Suspend)

PE Image

@ Injection

random (child)

@ Create PE Image
(from Resource Data)

PE Image —
@ Injection

Updated 0x400 Updated 0x400

@ Global Injection

0x400 Data 0x400 Data

& Request
for Delete

® delete dropper

Batch File

explorer

Set%AppData d d ¢ @ Starting Strategy
et %AppData%\random\random.exe to _
HKU\%SID%!\Software\Microsoft\Windows\Currentversion\Run _ Agent

Fig. 2. Citadel Malware Installation Process
When Citadel is executed, the Citadel Agent is installed as shown in Fig. 2. @ to ® show the image-

dropping technique frequently employed by malware. The dropper (child) process appears to have an

image of dropper.exe, but what actually results is a process with a completely different image generated by
the dropper process. Malware creators fregently use the image-dropping technique because it allows more
covert PE generation and execution than file-dropping. In other words, it is used to mask their presence to
evade detection by security software.

The newly-generated PE image does not engage in malicious activity immediately; instead, it copies
dropper.exe to a target location. The PE image seems to simply copy itself below the path %AppData% in
a random name, but debugging reveals that the data of the 0x400 bytes at the end of the file is
restructured and overwritten at the end of random.exe. This encrypted data of 0x400 bytes subsequently
control the routine flow of the PE image. For further technical details, refer to [Attachment:Technical —

0x400data Decryption Process].

Once the installed Citadel malware (random.exe) is executed, a batch file is used to delete the dropper
(®, ®). More precisely, the random process sends a signal to the dropper (child) process that remains

active. The dropper (child) process then performs the command by generating and executing a batch file
for deleting dropper.exe before ending itself. At this point, dropper.exe is deleted without issues because
the very first dropper process has already terminated.

@ to @ are identical to @ to @. The random process executes the exact same activity executed by
the dropper process except the deletion process.

PE Image
Image Dropping Dropper Delete
Routine Routine Encrypted
0x400 Data

Used by random Pgocess

Installation
Routine

Global Injection Citadel Agent

Routine Routine

Used by sample(child) Used by random(child)
Process Process

Fig. 3. Logical internal routine of dropper.exe and the PE image

The random (child) process upon completion of image-dropping, however, appears to be quite different
from the dropper (child) process. The PE image data injected in the virtual memory are completely
identical, but an entirely different routine is executed due to the 4-byte flag in the 0x400-byte data
described above. The random (child) process injects the PE image in the explorer process and all of its

child processes (i.e. @: global injection). The injected PE image (Citadel agent) functions in each process

as an independent thread.

The Citadel agent injected in the explorer process and its child processes is identical to that of the
dropper (child) and random (child), but functions as an entirely different program as the entry point is
different. Fig. 3. shows the logical structure (overall function) of the Citadel Trojan, which has been
designed to execute the routine required by context in the PE file and image. Here, it can be seen that the
core function (bot agent and info-stealer functions) of Citadel is executed in the Citadel agent routine.

System fix for as a malware re-execution strategy is also executed in the Citadel agent routine (@). The

strategy used is the registration of absolute path random.exe in the registry key shown below.

. HKU\%SID%\Software\Microsoft\Windows\Currentversion\Run

Design of the Citadel dropper is primarily focused on security program and analysis evasion. For
example, the code is made to appear as a GUI program instead of a malware dropper and the API actually
used by the code is assigned dynamically. As expected, the library name and function name to be used

are encrypted. Also, binary obfuscation technology is used to hinder analysis through reverse engineering

and API calls take place using a dynamically-written shellcode. For technical details on the anti-analysis
technigue described above, refer to [Attachment: Technical — Citadel Dropper: Anti-analysis Method].

B. Citadel Agent Functionality

The Citadel agent (injected code) has two functions: a passive function automatically executed on an
infected system and an active function executed upon receipt of a command from the C&C server. The
passive function is executed by the hooked code that set through hooking in the Citadel agent initialization
functions when required. While the active function is also executed by the hooked code set in the network
API, it is not executed without a command (network packet) from the C&C.

» Passive: User-level API Inline Hooking

Inline hooking of Citadel is executed in the function {.text.0041b7ee}. The gethostbyname and
4

getaddrinfo APIs are hooked by the injector as a test. The APIs shown in [Table 1] are actually hooked
when the Citadel agent is initialized. As the table shows, the majority of the hooked codes are identical
to those of the Zeus source code. As such, these codes will be categorized by class file (*.cpp) and
explained. For newly-added or edited hooked codes, refer to Chapter 3.

API Name Hooked Code Same as Zeus’s Hooked Code
NtCreateUserProcess .text:00419AEA corehook.cpp / hookerNtCreateUserProcess()
NtCreateThread .text:00419A34 corehook.cpp / hookerNtCreateThread()

LdrLoadDlII .text:00419COF Citadel Unique
ExitProcess .text:00419E37 Citadel Unique
GetFileAttributesExW .text:00419E78 corehook.cpp / hookerGetFileAttributesExW()
CreateProcessAsUserA .text:00419EDE Citadel Unique
CreateProcessAsUserW .text:00419EF5 Citadel Unique
PlaySoundA .text:00419F0C Citadel Unique
PlaySoundW .text:00419F33 Citadel Unique
HttpOpenRequestW .text:0041D72A Citadel Unique (But Similar as Zeus’)
HttpOpenRequestA .text:0041D768 Citadel Unique (But Similar as Zeus’)
HttpSendRequestW .text:0041D7A6 wininethook.cpp / httpSendRequestBodyW()
HttpSendRequestA .text:0041D7FB wininethook.cpp / httpSendRequestBodyA()
HttpSendRequestExW .text:0041D850 wininethook.cpp / httpSendRequestExBodyW()
HttpSendRequestExA .text:0041D8ED wininethook.cpp / httpSendRequestExBodyA()
HttpEndRequestA .text:0041D98A Citadel Unique (But Similar as Zeus’)
HttpEndRequestW .text:0041D9D5 Citadel Unique (But Similar as Zeus’)
InternetCloseHandle .text:0041DA20 Citadel Unique (But Similar as Zeus’)
InternetReadFile .text:0041DA8D wininethook.cpp / hookerInternetReadFile()
InternetReadFileEXA .text:0041DABB wininethook.cpp / hookerInternetReadFileExA()
InternetSetFilePointer .text:0041DB3A Citadel Unique (But Similar as Zeus’)
InternetQueryDataAvailable .text:0041DB94 wininethook.cpp / hookerlInternetQueryDataAvailable()
HttpQueryinfoA .text:0041DBCO wininethook.cpp / wininethook _hookerHttpQuerylnfoA()
closesocket .text:004249ED sockethook.cpp / hookerCloseSocket()
Send .text:00424A25 sockethook.cpp / hookerSend()
WSASend .text:00424A46 sockethook.cpp / hookerWsaSend()
OpenlnputDesktop .text:00411A9E vncserver.cpp / hookerOpeninputDesktop()
SwitchDesktop .text:00411AEE vncserver.cpp / hookerSwitchDesktop()

DefWindowProcW .text:00411B0C vncserver.cpp / hookerDefWindowProcW()
DefWindowProcA .text:00411B52 vncserver.cpp / hookerDefWindowProcA()
DefDIgProcW .text:00411B98 vncserver.cpp / hookerDefDIgProcW ()
DefDIgProcA .text:00411BDE vncserver.cpp / hookerDefDIgProcA()
DefFrameProcW .text:00411C24 vncserver.cpp / hookerDefFrameProcW()
DefFrameProcA .text:00411C6D vncserver.cpp / hookerDefFrameProcA()
DefMDIChildProcW .text:00411CB6 vncserver.cpp / hookerDefMDIChildProcW()
DefMDIChildProcA .text:00411CFC vncserver.cpp / hookerDefMDIChildProcA()
CallWindowProcW .text:00411D42 vncserver.cpp / hookerCallWindowProcW()
CallWindowProcA .text:00411D8B vncserver.cpp / hookerCallWindowProcA()
RegisterClassW .text:00411E10 vncserver.cpp / hookerRegisterClassW()
RegisterClassA .text:00411E5D vncserver.cpp / hookerRegisterClassA()
RegisterClassExW .text:00411EAA vncserver.cpp / hookerRegisterClassExW/()
RegisterClassExA .text:00411EFC vncserver.cpp / hookerRegisterClassExA()
BeginPaint .text:00423EF7 vncserver.cpp / hookerBeginPaint()
EndPaint .text:00423F67 vncserver.cpp / hookerEndPaint()
GetDCEXx .text:00423FA7 vncserver.cpp / hookerGetDcEXx()
GetDC .text:00424002 vncserver.cpp / hookerGetDc()
GetWindowDC .text:00424041 vncserver.cpp / hookerGetWindowDc()
ReleaseDC .text:00424080 vncserver.cpp / hookerReleaseDC()
GetUpdateRect .text:004240C0 vncserver.cpp / hookerGetUpdateRect()
GetUpdateRgn .text:00424153 vncserver.cpp / hookerGetUpdateRgn()
GetMessagePos .text:00417479 vncserver.cpp / hookerGetMessagePos()
GetCursorPos .text:004174AB vncserver.cpp / hookerGetCursorPos()
SetCursorPos .text:004174F2 vncserver.cpp / hookerSetCursorPos()
SetCapture .text:0041752F vncserver.cpp / hookerSetCapture()
ReleaseCapture .text:00417589 vncserver.cpp / hookerReleaseCapture()
GetCapture .text:004175D9 vncserver.cpp / hookerGetCapture()
GetMessageW .text:00417678 vncmouse.cpp / hookerGetMessageW()
GetMessageA .text:004176A0 vncmouse.cpp / hookerGetMessageA()
PeekMessageW .text:004176C8 vncmouse.cpp / hookerPeekMessageW()
PeekMessageA .text:004176F3 vncmouse.cpp / hookerPeekMessageA()
TranslateMessage .text:00415C38 userhook.cpp / hookerTranslateMessage()

GetClipboardData .text:00415DAE userhook.cpp / hookerGetClipboardData()

PEXImportCertStore .text:00413F13 certstorehook.cpp / _hookerPfxlmportCertStore()
gethostbyname .text:00424585 Citadel Unique
getaddrinfo .text:004245FE Citadel Unique

[Table 1] Windows API Hooking Point (Common)

Hooked Code Defined in corehook.cpp

client_winapitables__setUserHooks proc near

mov eax, pNtCreateUserProcess ; .text:0841B888
test eax, eax

jz short loc_41B89D

A i A 4
" "I
mov dword_433124, offset client_corehook_hookerNtCreateUserProcess
jmp short loc_41BSAC loc_41B89D:
nov eax, pNtCreateThread
mnov dword_433124, offset client_corehook_hookerNtCreateThread

]

vy

"N

loc_41B8AC:
mov dword_433128, eax
mov eax, pLdrLoadDll

Fig. 4. Entry Point of Hooking Code
Before the hooked codes defined in the {coreHook.cpp} file of Zeus are explained, the hooking code
must be explained. Although [Table 1] shows that both NtCreateUserProcess and NtCreateThread
APIs are hooked, NtCreateUserProcess and NtCreateThread are not hooked simultaneously as shown
in Fig. 4. The hooking codes are programmed in sequence so that NtCreateThread is hooked if the
address of NtCreateUserProcess is not attained.
The functions of hooked codes hookerNtCreateUserProcess() and hookerNtCreateThread() are identical.

When a new process is generated, the Citadel agent injects itself by calling its injector routine.
Subsequently, the global injection executed by the injector is maintained.

Hooked Code Defined in wininethook.cpp
The hooked codes set in network APIs are designed for the following two functions.

. HTTP Session Redirection
. Web Injection (MITB Attack)

The hooked code set in the HttpOpenRequest API separately manages new HTTP sessions created.
Sessions to be managed are not selected; all sessions are managed from the middle. The hooked code
set in the HitpEndRequest and IneternetClose APIs is an upgraded version of that of the Zeus source
code. (which explains the similarity to the Zeus code, but they are technically different.) These hooked
codes delete each session that ends from the data structure established for management. The following

is the structure used for session management. Each session has the structure shown in Fig. 5.

0x00 Session Handle Bvent Handle pPOSTdata plnjectScriptArray

0x10 ArrayCount pGETdata Getdata Size Getdata Offset

(VPN Faked Session Handle | | | ‘ | | | | |
Fig. 5. HTTP Session Management Structure

The Session Handle field shows the session managed by the structure and the Event Handle field is
used for synchronization. The pPOSTdata field and pGETdata field are pointers that indicate spoofed
GET/POST data. The plnjectScriptArray field is a pointer that indicates the embedded script to be used
for web injection (MITB attack). A session handle that will connect to a destination set by the attacker
instead of the normal destination is saved in the Fake Session Handle field(used for http session

7

redirection).

Hooked Code Defined in sockethook.cpp

The hooked code set in the WSASend, Send and closesocket APIs become the trigger for executing the
following info-stealing functions.

. FTP Credential Theft
. POP3 Credential Theft
. Macromedia Flash Files Control

[Table 2] shows the routines called by the hooked codes for each FTP/POP3 software from which
credentials are attempted to be stolen. Each routines are required to be different by each software
because it have different credential locations and security algorithms(e.g. encoding or encryption).

Software Code for Credential Theft Zeus’s Source Code
.text:00420272 ftpTotalCommanderReadIni()
.text:00420415 ftpTotalCommanderProc()
.text:00420107 ftpTotalCommanderDecrypt()
Total Commander
.text:00420230 ftpTotalCommanderBasicSearch()
.text:004200E2 randTotalCommander()
.text:0042045E _ftpTotalCommander()
.text:0042066D ftpWsFtpProc()
WSFTP .text:00420633 ftpWsFtpBasicSearch()
.text:0042089C _ftpWsFtp()
.text:00420FD3 ftpwWinScpDecrypt()
WinSCP
.text:0042108D _ftpWinScp()
.text:00421D3D ftpSmartFtpProc()
.text:00421849 ftpSmartFtpDecrypt()
SmartFTP
.text:00421CF8 ftpSmartFtpBasicSearch()
.text:00421F91 _ftpSmartFtp()
.text:004212EF ftpFtpCommanderProc()
FTP Commander .text:004212D5 ftpFtpCommanderMarkStringEnd()
.text:0042157E _ftpFtpCommander()
.text:0041FDFO ftpFlashFxp3Proc()
FlashFXP
.text:0041FCE3 ftpFlashFxp3Decrypt()

.text:0041FD96

ftpFlashFxp3BasicSearch()

.text:0041FFDE _ftpFlashFxp3()
.text:004209A8 ftpFileZillaProc()
FileZilla
.text:00420C4D _ftpFilezilla()
.text:00420CFO0 ftpFarManagerDecrypt()
Far Manager
.text:00420D4A _ftpFarManager()
Core FTP .text:00421621 _ftpCoreFtp()
.text:0041ECF8 getFlashPlayerPath()
Macromedia Flash .text:0041ED87 _removeMacromediaFlashFiles()
.text:0041ED3C _getMacromediaFlashFiles()
.text 0041F5C5 windowsMailAccountProc()
.text 0041F3BB getWindowsMailString()
.text:0041EDAD enumWindowsMailMessagesAndFolders()
.text:0041F40E appendWindowsMaillnfo()
.text:0041F02A appendOutlookExpressInfo()
Outlook Express
.text:0041EF2E _emailWindowsMailRecipients()
.text:0041F7D8 _emailWindowsMail()
.text:0041FBOE _emailWindowsContacts()
.text:0041F8BF _emailWindowsAddressBook()
.text:0041F16A _emailOutlookExpress()
.text:0041ECC1 writeReport()
Common .text:0042207F _ftpAll()
.text:0041FCB3 _emailAll()

[Table 2] Credential Theft Routines

Hooked Code Defined in vncserver.cpp and vncmouse.cpp

The functions found in {vncserver.cpp} and {vhcmouse.cpp} allow remote control of a client on which the
Citadel agent is installed. While a normal remote control program is an agent program that functions in a
single normal process, Citadel’'s remote control takes place through the dynamic synchronization of the
hooked codes of related APIs.

It should be noted that a remote control function initialization process is required for the valid operation
of this hooked code. Such a process is executed by option —v in the Main routine of the injector as

shown in Fig. 6.

"
cmp ecx, 76h . b
3 UNC Init
jz short loc_415676
1
v
"I
cnp ecx, 7RAh R 4
jnz short loc_415686
‘ v
3 s 3 "=
nov b1, 1 ; option_z
5676: ; Print Debug Message loc_u#1567C: ; option_n
[ebp+option_v], 1f|jmp short loc_415686 nov byte ptr [ebp+byteFlag_n], O ; Disable DEL Batch
short loc_415686 jmp shorE loc_415686

|

"I \
call client_unc_uncServer_init ; option_v
call client_unc_uncServer_startAsPaintThread
test byte ptr isWow6s, 4
mov bl, al
jz short loc_4156DA
)
A J
(" (=
push esi
nov eax, offset unk_433A18 loc_4156CD:
call client_core_freeUncProcessData push [ebp+t
jmp short loc_4156DA nov al, [¢
call client
nov bl, al

Fig. 5. Injector Routine Control Flow with v option

Hooked Code Defined in userhook.cpp

The hooked code for TranslateMessage and GetClipboardData found in {userhook.cpp} performs the
functions of key stroke and screen scrapper as shown in Fig. 7. String data saved in the clipboard is

also a target for theft.

10

[P
call client_core_isActive
test al, al
jz loc_415D9E
 J
e 53
mov eax, [ebx+4]
cmp eax, 201h
jnz loc_415D2D
A4 L
oL =&
mov eax, OFFFFh lea eax, [esp+38Bh+KeyState]
add word_433CCC, ax push eax ; 1pKeyState
push 16h call ds:GetkeyboardState
lea esi, [esp+384h+String1] test eax, eax Key Stroke
pop eax jz short loc_415D9E
call client_cryptedstrings__getl
mov eax, dword_4341D8 ‘
neg eax : .
sbb eax, eax imageljpeg
and eax, OFFFFFEGCh
add eax, 1F4h
push eax ; int
push 1Eh ; int
mov eax, esi
push eax ; 1pString1
call client_screenshot__screenTolIStream
mnov [esp+388h+var_374], eax Screen Scragper
test eax, eax
jz short loc_415D28

Fig. 6. Hooked Code: TranslateMessage API

Hooked Code Defined in certstorehook.cpp

The hooked code found in {certstorehook.cpp} is used to steal the private keys related to certificates
saved on the client. To load this certificate, the PFXImportCertStore APl must be called. By hooking the
PFXImportCertStore API, theft of both the certificate and its key is attempted when the certificate is
loaded.

» Web Browser API Inline Hooking

If web browser Firefox or Opera is used, network communication is executed through the Firefox or
Opera API instead of the Windows API. Thus malicious activities such as web injection and http session

redirection cannot be performed with the same hooked code if these two web browsers are used. As

such, Citadel directly hooks the network communication library (nspr4.dll) of each web browser. [Table 3]
shows the export functions of nspr4.dll hooked.

Export Function Name Hooked Code Same as Zeus’s Hooked Code
.text:004134D4 nspr4hook.cpp / hookerPrClose()
PrClose .text:0041B332 nsprdhook.cpp / hookerPrClose()
.text:0041294E nspr4hook.cpp / hookerPrClose()
PrOpenTcpSocket .text:0041349A nsprdhook.cpp / hookerPrOpenTcpSocket()

11

.text:0041B2DC

nsprdhook.cpp / hookerPrOpenTcpSocket()

PrRead

.text:0041AFAG6

nsprdhook.cpp / hookerPrOpenTcpRead()

PrWrite

.text:0041ADBO

nsprdhook.cpp / hookerPrOpenTcpWrite()

[Table 3] nspr4.dll Library Hooking Point

PrOpenTcpSocket is a function that performs the same function as HttpOpenRequest in the Windows
API. Thus the hooked code set here separately manages created http sessions by creating the structure
shown in Fig. 8. PrClose performs the same function as HttpEndRequest of the Windows API. As with
HttpEndRequest, it removes the structure when a session is ended.

Session Handle pURIs skipBytesWrite plnjectScriptArray
ArrayCount pBufferFromServer BuffefSize *buf
bufSize position realSize *buf PendingResponse
bufSize position | | | | | |

Fig. 7. HTTP Session Management Structure (nspr4.dll)

The Session Handle field shows the handle returned by the function PrOpenTcpSocket. The second field,
PURL, is a pointer that indicates the URL string of a connected website. Saved in skipBytesWirte are
data sizes to be ignored by PR_WRITE. The fourth field is identical to that of the Windows API (string
array pointer in which the script to be used for web injection is saved). ArrayCount indicates how many
arrays exist. The pBufferFromServer pointer indicate the location where data received from the server is
saved and BufferSize indicates the size of the saved location. PendingRequest and PendingResponse
are structures that each contains network request and response data.

» Active: Citadel C&C Command List

Citadel C&C Command List

0s_shutdown 0S_reboot
url_open
bot_uninstall bot_update

dns_filter_add

dns_filter_remove

bot_bc_add

bot_bc_remove

bot_httpinject_disable

bot_httpinject_enable

fs_path_get

fs_search_add

fs_search_remove

user_destroy

user_logoff

user_execute

user_cookies_get

user_cookies_remove

user_certs_get

user_certs_remove

user_url_block

12

user_url_unblock

user_homepage_set

user_ftpclients_get

user_emailclients_get

user_flashplayer_get

user_flashplayer_remove

module_execute_enable

module_execute_disable

module_download_enable

module_download_disable

info_get_software

info_get_antivirus

info_get_firewall

search_file upload_file
download_file
ddos_start ddos_stop

[Table 4] Citadel C&C Command List derived from Encrypted Data

13

3. Citadel: Additional Factors

A. Windows APl Hooking
Citadel malware attempts inline hooking to the Windows API to covertly perform malicious activity. It is
identical to Zeus in that regard. However, Citadel has other hooking points in addition to the APIs hooked

by Zeus. Also, some functions of Zeus' hooked codes have been edited. [Table 5] shows hooking points
and hooked codes that have been added or edited.

Windows API Hooked Code Description
LdrLoadDlI .text:00419COF Hooking Trigger for nspr4.dll, chrom.dll
ExitProcess .text:00419E37 Citadel Finalization Code
CreateProcessAsUserA .text:00419EDE
Integrity Up (Code for upper Windows VISTA)
CreateProcessAsUserW .text:00419EF5
PlaySoundA .text:00419F0C . .
Noise made on the client when remote control takes
place is removed
PlaySoundW .text:00419F33
gethostbyname .text:00424585
Pharming (DNS Redirection)
getaddrinfo .text:004245FE

[Table 5] Windows APl Hooking Point (Citadel)

The hooked code set in the LdrLoadDIl APl monitors the times when nspr4.dll (Firefox, Opera) and
chrome.dll (Chrome) are loaded. When loading is detected, the code attempts to hooks network function
provided by nspr4.dll and chrome.dll. Functions that hooking is attempted for and the functions of the set
hooked codes are shown in Chapter 2.B(Web Browser API Inline Hooking) for nspr4.dll and Chapter 3.B
for chrome.dll.

The hooked code set in the ExitProcess API performs finalization of the Citadel malware. While most of
Citadel's functions are identical to those of Zeus, the modules that control the functions (e.g. main and
initialization routines) were developed independently and thus a different finalization code is required.

The hooked code set in the CreateProcessAsUser API is for platforms higher than Windows Vista. It
increases the integrity level of generated processes.

The hooked code set in the PlaySound API is intrinsically related to VNC service. It is a code that
prevents noise from being made on a PC infected by Citadel when remote control is taking place. It is
suspected that the code has been designed to prevent a clicking noise that might be heard by nearby
individuals if speakers are connected to an infected PC.

14

. dint ___stdcall citadel hookedCode gethostbyname{char =1pHMem)
citadel hookedCode_gethostbyname|proc near
1pHMem= dword ptr 8
push ebp
mov ebp, esp
push edi
push [ebp+1pHem] ; hame
call ds:gethostbyname
mov edi, eax
call client_core_isActive
test al, al
jz short loc_ 4245F7
[Jlr
push [ebp+1plemn]
call client_backconnectbot proc_inner
mov [ebp+1pliemn], eaX DNS Redirection
cmp eax, esi for Local Pharming
jz short loc_ 4245EE
[PV vl[
loc_4245CD: s Cp
push [ebp+1pHem]
call ds:inet_addr
mov ecx, [edi+BCh]
mov ecx, [esi+ecx]
inc ebx
mov [ecx], eax
mov eax, [edi+BCh]
mov esi, ebx
shl esi, 2
cmp dword ptr [esi+eax], 0O
jnz short loc_4245CD

Fig. 8. Hooked Code: gethostbyname API
The hooked codes set in the gethostbyname and getaddrinfo APIs are for local pharming. This is a new
malware function unique to Citadel. For pharming, DNS redirection through Windows API hooking takes
place. However, Fig. 9 shows that codes provided by Zeus have been used to achieve this function. What

this means is that Citadel uses Zeus’ physical modules to achieve the new logical function of local
pharming.

B. Chrome Web Browser APl Hooking

Zeus not only hooks the network APIs of Windows but also the network functions provided by web
browsers such as Firefox and Opera. This is because Firefox and Opera use their own functions (not
Windows APIs) for network communications. Chrome, the most popular web browser of late, also uses its
own functions for network communications. The Citadel malware even hooks those functions for http
redirection and web injection (MITB attack) on Chrome.

Finding hooking points on FireFox and Opera is easy because they export network
connection/disconnection (PR_OPEN, PR_CLOSE) and 10 calculation (PR_READ, PR_WRITE, ..)

functions from a library file called nspr4.dil. On the other hand, it is relatively difficult to find a hooking
point on Chrome as its main DLL chrome.dll does not export such functions. For that reason, Citadel finds
a hooking point by identifying a code pattern in the chrome.dll image loaded on the memory. The address
of the hooking code that identifies a code pattern in chrome.dll and executes inline hooking is

15

{.text:0x0041BEA5}.

Functionality Function RVA in chrome.dll Hooked Code
OxC3FA72 text:41B69C
Open
0xC422BA .text:41B69C
OxC3FD27 .text:41B6B8
Close
0xC43478 .text:41B6B8
O0xC3FEEA .text:41B6CE
Read
0xC4265A text:41B6CE
0xC40056 .text:41B6F2
Write
OxC426AF .text:41B6F2

[Table 6] chrome.dll Library Hooking Point

[Table 6] shows the hooking points for Chrome Version 15.0.874.106. The analyzed sample succeeds in
hooking by finding the code pattern of Chrome Version 15.x, 16.x and 17.x. The Chrome team promptly

responds to such malware attacks and the Citadel team also provides ongoing updates.

C. AES Crypto Algorithm
The Citadel malware performs multi-layered encryption of configuration files (static/dynamic) and stolen

data by using Custom Xoring, RC4 encryption algorithm and AES encryption algorithm.

16

; Part of Decrypted{(L1) Static Config (=RC4 KEY)

MDSsum (=AES KEY)

client_core_getBaseConfig proc near

push esi

mov edx, 56Ch ; size

push edx

push offset| EncryptedBaseConfiq Bx56C

push eax Static Configuration File
call common_men__copy

mov ecx, mylmageBase
add ecx,[relocSectionRUA ; KEY Table

mov esi, edx KEY

sub ecx, eax

16h

[ebp+arg_8] 5 AES KEY
eax, [ebp+var_14]

eax

common_mem__copy

eax 5 AES KEY
eax, esi

[citadel ﬁESencrgEtionl»/

ebx, ebx

push ebp

mov ebp, esp

sub esp, 6B4h

push ebx

mov bl, [ebp+arg_8]

push esi - —

lea eax ebp+var 6B

call ; get Decrypted(L

mov

call common_str__LengthA

push eax ; Length InputData

push ecx ; InputData

lea eax, [ebp+var_14] ; MDSsum

push eax

call common_crypt__md5Hash

push 16h

lea eax, [ebp+var_14] ; new HMDSsum

push eax

lea edx, [ebp+var 28F

call

push 16h

lea eax, [ebp+var_14] ; Encrypted(RC4) new

push eax

lea eax, [ebp+var_24]

push eax

call common_mem__Ccopy

mov ecx, [edi]

mov [ebp+arg_3], 8@

test ecx, ecx]

jz short loc_489ECS push
push

o L = lea
ush

push eax . 5 “_ilE—VAi—»Eau

mov eax, [edi+4] push

call [comnon binstorage unpack] mou

mov [edi+4], eax call

test eax, eax test

jz short loc_489ECS jz

follows.

/ call

short loc_436DES

L‘
Ll =2}

=

loc_414CFC:

mov dl, [ecx+eax]
xor [eax], dl1

inc eax

dec esi

jnz short loc_414CFC
e ooy

&

; Xoring

s B3

pop esi
retn
client core_getBaseConfig endp

"I

push [ebp+arg_8]

lea eax, [ebp+var_134]
citadel_naESencryptionSubBytes

test eax, eax

jz short loc_42B664 1

"

loc_42B627:

push 16h

push edi

lea eax, [ebp+var_28]

push eax

call common_mem__copy

lea eax, [ebp+var_18]

push eax

push 2

lea eax, [ebp+var_28]

lea ecx, [ebp+var_134]

call citadel_AESencryptionOthersProcess

cmp eax, 1

jnz short loc_42B658

Fig. 9. Citadel Multi-layered Encryption (Decryption Process)

Fig. 10 shows routine {.text:00409DF7}, executed when configuration data update is commanded by the
C&C, and is an apt representation of Citadel’s multi-layered encryption. More precisely, Fig. 10 shows the
process in which the AES round key is obtained by referencing the md5sum data {.text:00401868}
included in the static configuration data {.text:004064D0} and Citadel agent. Details of the process are as

A static configuration data (Ox56c bytes) is decoded using the Custom Xoring routine
Custom XORing routine address: {.text:00414CDA}

RC4 key is found in the decrypted static configuration data

md5sum hard-coded in the Citadel agent is input to perform MD5 hashing once

New md5sum is encrypted using the RC4 encryption algorithm; key obtained from the decrypted

static configuration data is used

md5sum encrypted using RC4 is used as an AES encryption algorithm SEED

If a value at an entry of configuration data is required, an AES key is obtained through the process
shown above and then only the value is decoded to obtain data. If refreshing is required, the same
process is used to decode the entry and plain text is edited and encrypted before being updated on the

payload.

17

[Attachment: Technical — Static Analysis: dropper.exe / PE Image]

Librasy funcsion
B Regular function
B Instructon

Data
Unexplored
Extornal symbol

.rdata Section .data Section .rsrc Section

text Section (0xA077)

.rsrc Section Header

WA Data Description Value
00400248 2E 72 73 72 Name .rstc
0040024C__ B3 00 00 00
| 00400250 OOO35GFE Virtual Size fe

uo400254 oooT2000 RVA

00400258 00035800 Size of Raw Data

0040025C O00ODEOD Pointer to Raw Data

00400260 00000000 Pointer to Relocations

00400264 00000000 Pointer to Line Numbers

00400268 0000 Number of Relocations

00400264 0000 Number of Line Numbers

0040026C 40000040 Characteristics
00000040 IMAGE_SCN_CNT_INITIALIZED_DATA
40000000 IMAGE_SCN_MEM_READ

File dropper.exe has the binary layout shown in the above diagram. The text section’s size (virtual size) is
O0xAQ77 bytes; two thirds of that comprises known libraries (sky blue), user codes (blue) are approximately
0x3500 bytes. Because the sample was compiled using the Microsoft Visual C++ 9.0 engine and
programmed using OOP (Object-oriented Programming), actual user code size is estimated to be less than
0x3000 bytes. As described in the above report, this user code is divided into two categories: an image-
dropping routine that injects a decoded PE image in child processes and a dropper-delete routine that
generates a batch file and deletes file dropper.exe.

= banker.exex [VA Raw Data Value
IMAGE_DOS_HEADER i| 00413344 |8c| 0B 059D D376 0D83 51 5E921DCBC7 09 F2 Vi Qi
MS-DOS Stub Program | BF 93 98 F3 23 C8 51 OB 3D 42 CEDOBEF3 B15E(.Q.=B..n.. 4
IMAGE_NT_HEADERS 004133C4 BF 41 3F 2C 8C FB 70 B9 E5 67 CF 49 BA4CFB 6F 0A?,. .pi.g.l.L.o
IMAGE_SECTION_HEADER|| 004133D4 53 8F 77 57 C1 2B F4 51 E2 76 E9 4F 76 1B 87 CO S.wW. +.Q.v. Ov
IMAGE_SECTION_HEADER|| 004133E4 7B 21 A3 DD 50 A2 32 66 F2 A7 71 30 3EOF 02 06 {!..P.2f..q0>.
IMAGE_SECTION_HEADER|| 004133F4 EAAF 83 99 AB87 9C 73 8622 D198 34 82 D50C g,
IMAGE_SECTION_HEADER|| 00413404 11 7D 13 8E D4 AF 1A A3 BE 40 10DDF1 2E4C3A .}. n@ ... L:
SECTION text 00413414 D9 76 8C FO 4A9A BB 43 SDFEBC7DEBDC S8 05 .v..J..C]..}. X
SECTION .rdata 00413424 94 69 1B 11 BS EO 16:8A 91 34 6C 53 79:8C 4F 01 . i... 418y.0.
SECTION .data 00413434 57 5E 7B 18 OEFD 26 F2 62 85 40 18 BO AEAS EE WA{ .. . 8. b.@.
= SECTION .rsrc | 00413444 3E1F 7A A7 13BESB B0 81 ED957D7DEBB4D2 >.2. .. [....}}.
IMAGE_RESOURCE_DIF/| 00413454 C5 79 C3 GA 47 BEBAE2 8F 27:.38:01 C7 72 C58D .y.jG....'8..r.]
IMAGE_RESOURCE_DIR|| 00413484 7F OD 4C 80 AAAD 13 16 C4 51 37 42 7AE9 84 1F . L. Q7Bz
IMAGE_RESOURCE_DIR|| 00413474 'FF E3 30 58 E9 92 24 3B 81 4E ASEB B5 7907 DC . .0X..*. .N.k.y..
IMAGE_RESOURCE_DA|| 00413484 BC AE E3 EA D5 8B 45 C9 5A 59 89 2A 91 4F A C1 E.ZY.*.0j.
Size: 0x341F0 RCDATA 0007 0409 00413494 04 BD 19 FD BE 1A 22 A3 AB 17 45 76 85 AE4DOE o EYL M,
004134A4 81 1E A3 11 E2 57 58 4D EA7F B9 ABB3 91 EBD5 WXM. i
MANIFEST 0001 0409 || 004134B4 39 87 95 1EFODEF9 2F D2 19 0E 75 BE2CFO A3 9... . .. oo,
004134C4 3D 4C 40 A7 ES1B 19 27 33 51 BD4CBIEIFI E2 =L@ ... '8Q.Li..
004134D4 EC OADB9C BAS9 54 C6 1BBC 98 33 55 6C 97 D2 YT 3ul..
004134E4 7F BF 36 7B 41 93 C6 64 C7 8F FAOE B0 7F A7 40 . B{A. . d..z.. @
004134F4 4BDE 9B 85 85 04 BD2D 4AE1B4 79 COB 1EFC K. doy

Besides the above 2 core routines, the encoded PE image and encrypted 0x400 data are included in the rsrc
section of sample.exe. It can be deduced that the PE image that will be the Citadel agent is in the rsrc
section as that section is larger (0x356FE) in comparison to the text section. The diagram above shows the
exact address (VA) where the encoded PE image is saved and a part of its data.

18

iNavig ator Scale: 1 pixel = 256 bytes: Range: 00401000-00436000

S [|
|

! \.text Section (0x3105A) = ! ==

IAT

.data Section

| Strings

00431EF2 00 00 _G6.68 80700 60788 00 06 00 60 68 08 OF Bé
08432862 C1 OF B6 CA 83 C1 C3 8F B6 C1 OF B6 CA 2B C1 C3
00432612 BFB6 C1pF7 DO 'C3:8F B6 C1 OF B6 CA 33 C1 C3 8A
60432622 C1 80 FA ©68 72 OE 56 OF B6 F2 C1 EE 03 86 C2 F8
004320832 4E 75 FA S5E 8A CA D2 CO C3 8A C1 80 FA 88 72 BE
80432842 56 OF B6 Q3_80. C2 F8 4 75 FA 5E 8A CA
064326052 D2 C8 C3|[RWEEEEEFMAMAL| 90 00 60 60 60 60 60 60

random Process EP

File layout of the PE image generated by dropper.exe is shown in the above diagram. Unlike general PEs,
this binary does not have a resource area and its text section accounts for more than 80% of the binary. It
can also be seen that the IAT is contained inside the text section. What is also out of the ordinary is that
string data that would normally be located in the data section is included in the text section. This kind of
binary layout differs from the PE structure generated by an ordinary compiler. However, such a design
facilitates injection of binary data in virtual memory as a PE image (because all required data is in a single
text section, target address can be changed according to the status of virtual memory in which the image will
be injected). Since the PE image generated by dropper.exe is injected and executed in a process(explorer
and it's children), this design proves to be efficient.

The basic EP of the PE image is the last part of the text section. As shown in the above diagram, it is written
like a shellcode and located away from user codes. This also demonstrates that the binary data was not
generated by the compiler alone.

19

[Attachment: Technical — 0x400data Decryption Process]

The following

00043610
00043620
00043630
00043640
00043650
00043660
00043670
00043680
00043690
00043640
000436E0
000436C0
00043600
000436ED
000436F0
00043700

00043900
00043910
00043920
00043930
00043940
00043950
00043960
00043970
00043980
00043990
000439a0
000439E0
000439C0
00043900
000439E0

data

E3
oc
7A
D4
BB
FC
31
D7
44
71
54
D2
EB
7B
78
16
DF

g1
c7
74
co
AF
Ba
7E
F2
12
96
Cc4
2E
58
10
c7
Al

94
DB
A9
gE
A7
Fé
76
32
29
B9
69
40
3E
g0
FC
5D
FEB

F4
67
33
CB
D7
7C
ED
C5
BF
5D
FE
42
08
42
3D
El

(0x400
97e545aae517a5f816abcd960875ac05).

A3
62
Fe
96
59
EBO
18
3D
F3
D3
14
30
AE
04
g2
71
EF

c7
Cc8
aC
8B
56
0z
ac
94
58
0s
98
85
FS
g8
bA
6A

CB
1F
3D
AE
aCc
02
82
BS
cc
El
77
D3
6B
0E
13
ED
33

0F
91
77
C3
DO
1D
BS
49
2
09
F8
1A
25
3A
32
5C

ED
5B
F4
Ca
8D
31
4C
c9
1C
6C
EB
Ad
EC
BA
4B
ED
E2Z

CB
46
9F
6D
13
1B
AD
3F
gE
ED
D3
8B
FB
75
co
39

bytes)

22
93
9C
5D
07
4D
04
Co
9B
CD
3B
EC
13
4C
0D
74
3B

1F
07
9F
9E
E3
15
37
D9
6C
9B
0o
09
75
CB
C4
Cc8

2C
c2
0a
4C
95
B4
BB
BF
Cc1
El
35
D4
51
19
F2
F5
DE

1B
17
CE
43
6E
AD
FO
35
57
53
7F
EE
7C
Bb
CF
13

gE
FC
a9C
6F
24
5B
C5
3E
6C
FB
61
8B
ED
47
D4
0o
8¢

6B
D3
6E
g8
93
47
ES
66
32
Ce
g2
0z
3F
Fe
78
97

exists

EF
ES
26
94
7A
92
20
g6
8E
46
60
BO
BB
63
gE
sD
CE

13
2C
64
AA
2h
A7
16
70
ED
89
7A
D4
6D
2B
2C
2B

D6
12
3C
10
69
87
A0
54
FE
98
94
88
B3
47
37
C1
41

ED
77
E7
31
E9
37
93
53
F2
4C
DC
58
54
cc
65
7B

AC
1E
4D
0B
8E
19
DB
D4
48
0D
CF
41
06
D1
8D
57
23

ED
29
87
FE
6D
C2
CA
49
56
B4
D&
BB
Cc8
CE
Ch
E6

behind

E6
1F
49
4E
D9
BS
A9
B2
A9
A8
99
37
08
g9
01
AE
99

18
15
4E
3B
F7
cc
AB
3D
ES
8B
54
27
3A
0a
oc
gC

1D
95
EO
77
F5
c7
g9
72
42
BC
FO
g9
32
OF
25
E2
c7

oo
15
c9
31
1F
54
cc
ED
4c
85
AB
El
3A
54
47
BF

the

66
0D
E9
37
Fe
40
3A
Al
CD
65
6C
F4
36
gD
0a
EE
G5

ES
07
F8
4E
43
9E
8F
CE
8E
36
54
28
9D
SF
AA
ES

T2
AE
66
6A
B4
ED
01
89
g1
2F
94
21
89
F2
CE
8a
59

B9
08
70
4E
F1
1C
42
FD
50
Al
8B
ga
58
21
Ad
A2

file dropper.exe

8B
Al
BE
4F
E2
Ab
75
61
Cc4
30
05
96
9D
0B
97
1A
29

AB
CE
43
5B
CcS
C3
24
04
90
E7
F8
D3
B9
FC
8C
63

E1LEX",1i0-2 frl
Ub 114i& 1 ®j
z06=a1 1&<MIa&fH
O1I®E]Lal Nw7j0
»>§YI1 15zilUs6 "4
G 1M 71 po@s!
v IL »& U0I: u
x2=pPEEL> 1TO?ri la
D)ol 1ALIBHOBIIA
qt04alianFl “¥%e 0
Ti w»;5a 111811
0@OO=101°IAT7IA!]
g>8ki Qi»® 2611
{1 jL GeGHI 12
il K a0171 % 11
Jqissts |AWRAi N
B 3acRiIA(ICAY)

16 E k i1 atx
CgE“F O,w) E
|t3\w||indg|NEzpc
AEIEmICI21p; 1NN
TXVD &nlx*ém+ Hid
9] -G§7AITI &
~ilp-784 IE"I1B=
SAIT?USEpST =iy
¢XgIIW21iaVALIPI
1] 4iISEIL 116 ¢
Apla® 11zUOT Tla
BL L i Ox»rad
X &%iu| ?mTE: : 1X!
Bl:uEMs+Ii T 1i
C=j28ATx,ef Ga®|
(4jN9E 1+{zliédc

(md5:

This 0x400 data physically exists in dropper.exe, but the routine that actually uses or updates this data is
found in the PE image (installer). The PE image (injector) also references this 0x400 data.

The analysis shows that this 0x400 data is encrypted by the RC4 encryption algorithm and the encryption
key is derived from static configuration data (Ox56c bytes). As such, when the PE image (installer) is

executed, static configuration data is loaded from the inside of the file (text:004064D0) ahead of any other
activity and the RC4 key generation process commences (RC4 Init).

20

push ebp i
mnov ebp, esp
sub esp, 504h push 163h
push ebx push [ebp+arg_8]
push 56Ch lea eax, [ebp+var_16C]
mov ebx, eax push eax
push offset EncryptedBaseConfig_Bx56C ; static Config call CORRNON._MEN:__COPY
lea eax, [ebp+var_184] push 4
call common_crypt__rc4Init ; common_crypt(long double,char,Init) lea eax, [ebp+var_i]
mov ecx, [ebx] ; dropper.exe Size of Image -___B_lpush eax ‘
push eax ; Result of rculnit (6x188) _— lea edx, [ebp+var_16C]
mov eax, [ebp+arg 8] ; pHeap (dropper Image) - call common_crypt__rch
call | common crythetﬂdW‘- J
mov dword ptr [ebx], 4006h ¥
test eax, eax - <=
jz short loc_U14F60
= == - loc_431568:
¥ cmp [ebp+var_4]
"I k jnz short loc_43158E
push esi
lea ecx, [ebp+var 184]
push ecx ; Table
push eax ; Offset: EOF-0x400
lea esi, [ebp+var 504]
call |lcommon baseoverlay loadOverlayj}— ")
pop esi
test al, al push RN .
j hort loc_414F68 £a £l (RN
1 = Sy I push edi
c L 3. i J call common_crypt_crc32Hash
L / oy cmp eax, [esi+h]
i Ll jnz short loc_43148A
push dword ptr [ebx]
lea eax, [ebp+var_504]) |loc_414F60:
push eax Xor eax, eax
call common_mem_copyEx
jmp short loc_414F62

T

RC4 Init generates a key table (0x100 bytes) based on the input seed (static configuration data). The RC4
Init function is located in {.text:0042A7E8}. When key generation is complete, RC4 decryption of the entire
dropper.exe image commences. The decryption routine (_rc4) is located in {.text:0042A8D8}.

Decryption result is checked in units of 4 bytes to see if it matches 0x45564144. This data is the first 4 bytes
of the decrypted Ox400data (signature of the 0x400 data). In this way, the PE image (installer) determines

the starting location of the 0x400 data. What can be inferred here is that the 0x400 data may not always be

found at the end of the file. This is because the entire image has been decrypted to locate the 0x400 data.

After the PE image (installer) locates the 0x400 data, an integrity check is performed. The second 4 bytes of
the 0x400 data is CRC32 Checksum as can be seen in the above diagram. The data with the Checksum to
be checked are Offset 8 to the end of the 0x400 data. The routine that generates CRC32 Checksum can be
found in {.text:0042A77E}.

The flag value is checked when the integrity check is complete. The flag of the 0x400 data is 0x000C if
dropper.exe has been generated by the Citadel builder. The PE image is designed to function as an installer
if this value remains 0x000C and as an injector if the value is changed to 0x011C. Thus it can be deduced
that the installer edits this flag in the process of Citadel malware installation to enable the injector to function.
The flag value separates the PE image and also represents the size of the data found at the end. If the flag
value is OxC, OxC worth of data is saved in the heap. If the flag value is 0x11C, 0x11C worth of data is saved

in the heap. The exact function of this data could not be identified as the data was not used in the analysis.

21

[Attachment: Technical — Citadel Dropper: Anti-analysis Method]

* Encryption for Binary Obfuscation

mov esi, offset EncodedDatafArray@ ;
; Example)
; Address Hex dump ASCII
; BO12FE98 55 36 37 6C|33 61 59 57|7A 78 50 6C|58 52 58 51| U6713aYWzxP1XRXQ
;5 B012FEA8 79 51 69 46|73 62 58 73|5A 61 S5A 6F|4D 37 71 53| yQiFsbXsZaZoM7qS
; BO12FEB8 44 76 58 38|59 68 4F 44|41 70 72 36|51 6B 50 62| DuX8YhODApr6QkPb
; BO12FEC8 74 4F 7A 39|73 6A 4E 55|64 6F 63 76|41 58 74 60| t0z9sjNUdocuAXt

lea edi, [ebp+78h+var_94]

rep movusd

mov esi, offset unk_406DBES

lea edi, [ebp+78h+LibFileName]

movsd

movsd

lea eax, [ebp+78h+LibFileName] ; Setting OutBuf

movsd

mov [ebp+78h+var_98], eax

lea eax, [ebp+78h+var_98] ; pOutBuf

push 8Eh ; PARAM3: Loop Count

push eax ; PARAM2: pEncodedData / pOutBuf

lea ecx, [ebp+78h+var_94] ; PARAM1: SEED (for KeyTable Gen)

mousw

call CustomDecoding ; Example)
5 [OutBuf]
; Address Hex dump ASCII
; BO12FFBC 6B 65 72 6E|65 6C 33 32|2E 64 6C 6C| 60 kernel32.dll

VA of the custom decoding routine of dropper.exe is {.text:00402ad6}. As shown in the above diagram,
dropper.exe has the library name and APl name it will use in an encoded state and dynamically calls and
uses the API needed. The 3 parameters of the decoding routine are as follows.

PARAMZ1.: A value that generates the key table to be used for XORing
PARAM2: Where encoded data (IN) and decoded strings (OUT) are saved
PARAM3: Number of times the loop found inside the routine will be executed (i.e. data size)

This dynamic allocation of APIs to be used by the program is a technique employed to better evade security
programs. The function name and library name required for such dynamic allocation are decoded for the
same reason. A different seed is used for each set of data to be decoded; the seeds are located in
{.rdata:0040d970}.

(PR
loc_462BFC: =

mov cl, byte ptr [ebp+ecx*4+796h+var_u464] ; Load KEY from KeyTable
Xor [edx+ebx], cl ; Xoring

cdq

push 3

pop ecx

idiv ecx

inc [ebp+798h+var_808] ; offset++

lea ebx, [eax+2FDh]

mov eax, [ebp+796h+var_808]

cmp eax, [ebp+798h+arg_4]

jl loc_462B95

The encoded PE image in the resource area also is decoded using by the same routine. The above diagram

shows the core {.text:00402c03} of the decoding routine.

¢ Indirect API Call Method

Dropper does not call APIs directly; APIs are called indirectly using the CallWindowsProc API. This kind of
programming may be due to the characteristics of the Visual C++ 9.0 compiler (Enable obfuscation option),

22

but it is not a normal call method. The following is a call method using CallwWindowsProc.

When the API which should be called have zero parameter

il e 3
push ebx

push ebp

Loaeh. o
xor (ebx) ebx
push ebx

; PARAM3: Number of Parameter

push offset ASCII_Comctl32_dl1l ; PARAM2: "Comctl32.d11" ASCII
mov ecx, offset ASCII InitCommonControls ; PARAM1: "InitCommonControls' ASCII

call FunctionCallMethod

When the API which should be called have parameters

push eax

push eax
push ebx
push ebx
push 84h
push ebx
push ebx
push ebx
esi

lea eax, [ebp+var 498]

lea eax, [ebp+uar_ u438]

; 1pProcessInformation

1pStartuplInfo
1pCurrentDirectory
1pEnvironment
duCreationFlags
bInheritHandles
1pThreadattributes
1pProcessAttributes
1pCommandLine
lpApplicationName

push ebx

PARAM3: Number of Parameter

ebx, offset ASCII_Kernel32_dll

; PARAM2: Library Name

mov ecx, offset ASCII_CreateProcessW ; PARAM1: API Name
call FunctionCallMethod

The above diagram shows the two call methods used by the function FunctionCallMehthod, which calls the
CallwindowsProc API from the inside. Parameters of this function are as follows and correspond to the red

area shown in the above diagram.

PARAM1: APl name to call (ASCII)

PARAM?2: Library name that provides the API to call (ASCII)

PARAM3: Number of parameters the API to call has

If there are parameters to send to the API to call, the required data is saved in the stack (blue area) in
advance and the number of data is then inserted in the 3™ parameter.

23

or [ebp+1887Ch+var_18898], BFFFFFFFFh
push ed ; ARG2: Library Name
xor ebR b
cmp eax, ebx
jbe loc_4827D9
A 4
[)
push esi 5 ARG1: API Name
push e3 ; Library Handle
mov esTes
cmp esi, ebx
jbe loc_4827D9
2
push OFFFFh ; size T
push ebx = nE
lea eax, [ebp+1807Ch+var_10004]
push eax ; void =
call Anense t
add esp, 18h
mov [ebp+18067Ch+var_10085], 59595958h ; "XYYYYP"
mov eax, 585%h
Tﬁi :g:e ptr [ebp+eax+16807Ch+uar 10884], OESHh Qenerate Shell.code.
sub esi, eax (Calling API Functionality)
lea ecx, [ebp+1807Ch+var 10004]
sub esi, ecx
sub esi, 4
mov [ebp+eax+1887Ch+var_106864], esi
mov byte ptr |ebp+eax+1007Ch+uar_10000], OGIh v
mov [ebp+168687Ch+var 160808], ebx 1 58 0P
push ebx
push ebx
push ebx
push ebx
mov eax, ecx BE16725C (G2 CommonControls
push eax 5 CPU Dump
; Address Hex dump ASCII
; B8011FF14 58 59 59 59|59 50 E8 BE|16 72 5C C3|60 00 80 88| XYYYYPe3 —rif
call pCallWindowsProcA

The above diagram illustrates one of the two call methods through which APIs without parameters are called;
core codes of the FunctionCallMethod are displayed. This function obtains the address of the actual API

code through the input string (library name, APl name) and dynamically writes the code that calls the API in
the heap memory. Then, by allocating the code’s starting address to the first parameter of the
CallwindowsProc API, the desired API is indirect called.

24

or [ebp+10887Ch+var_10898], BFFFFFFFFh

push 3 5 ARG2: Library Name
call
Xor ebRseb
cmp eax, ebx
jbe loc_4827D9
v
(e
push esi ; ARG1: API Name
push [F ; Library Handle
nov esTes
cmp esi, ebx
jbe loc_4627D9
v
push OFFFFN ; size t
push ebx ; int
lea eax, [ebp+1887Ch+var_ 10064]
push eax ; void =
call memset
add esp, 18h
|mov [ebp+1887Ch+var_10004], 59595958h ; "XYYWYP"
mov eax, 5659h
o Generate Shellcode
nov byte ptr [ehp+eax+1Bﬂ7ﬁh+uar_1d88u], 68h|i| (Calling API Functionality)
mov edx, [ecx]
mov [ebp+eax+1867Ch+var_10004+1], edx
add eax, 5
sub ecx, 4
dec edi
jnz short loc_ 482789
.|
YYY
W =
loc_48279D:
nov byte ptr [ebp+eax+1887Ch+var_108084], BESh
inc eax
sub esi, eax
lea ecx, [ebp+1887Ch+var 108084]
sub esi, ecx
sub esi, 4
mov [ebp+eax+1887Ch+var_10004], esi
mov byte ptr [ebp+eax+1887Ch+var_188868], 6C3h
nov [ebp+1887Ch+var_1080888], ebx

COX

ebx

ebx

ebx

eax, ecx

eax ; Address Hex dump ASCII
; BO11F98C 58 59 59 59|59 50 68 70|FA 12 80 68|18 FA 12 88| XYYYYPhpul hiu?
; BB11F99C 68 OO0 00 00|66 68 0O 60|66 B0 68 84|60 66 68 68| h h h? h
; BB11F9AC OO0 60 60 00|68 60 00 60|66 68 60 68|00 66 68 90| h h h?
; 8611F9BC 3C 3D 66 68|00 60 66 OO|E8 69 29 6E|7C C3 <= h ei)n|A

pCallWindouwsProcA

The above diagram shows the core codes of the FunctionCallMethod when APIs with parameters are called.
Again, the starting address of the code that calls the API is set in the first parameter of CallwWindowsProc, but
the code generated in the heap memory is different because the parameters must be handed over.

25

[Attachment: Technical — Citadel’s Characteristics]

¢ Infection Area

There are several known characteristics of the Citadel Trojan. One of them is that computers in a certain
region, namely Russia and Ukraine, do not get infected as an LCID comparison shows.

push ebp
push edi ; CPU Dump

; Address Hex dump

; OBAE1EAG 12 64 20 EB|12 684 12 84|

call ebx ; GetKeyboardLayoutList

movzx = esi, word ptr’ [ebpredx*i+0]
sub esi, ds:notlnfectLCID[ecx] ;
; 82419 {Russian)
; 82422 {(Ukrainian)

neg esi

shb esi, esi
add ecx, 4
inc esi

cmp ecx, 8

The above diagram shows codes that compare the LCID value obtained through the GetKeyboardLayoutList
API and the Russian/Ukrainian LCID value. If these LCID values are identical, the terminate routine is

executed immediately.

¢ -z Option: Print Debug Message

The following is another known appearance.

loc_41568C: ; CODE XREF: Main+4ETj
push eax ; hiem
call ds:LocalFree
test bl, bl
jz short loc_4156A5
push esi ; uType
push esi = i
push OFFsei-E;;;E;IE;;;iﬂﬁiggt%%-?1ukﬂku}4ﬁf4uﬂ4ﬂkﬁﬂfBS for personal use o"
push esi . nuna
call ds:HessageBoxzA

; char CitadelComment_ASCIIJ]
CitadelComment_ASCII db FCoded by BRIAN KREBS for personal use only. I love my job & uiFe.]
> DATA SREF: Main+%Cjlo

If the PE image (injector) is executed using the -z option, the string ‘Coded by BRIAN KREBS for personal
use only. | love my job & wife’ is displayed in the MessageBoxA API. Brian Krebs is the name of a security

researcher who researches commercial bots such as Zeus, SpyEye and Citadel.

26

About AhnLab, Inc.

AhnLab develops industry-leading information security solutions

and services for consumers, enterprises, and small and medium
businesses worldwide. As a leading innovator in the information
security arena since 1995, AhnLab’s cutting-edge technologies

and services meet today’s dynamic security requirements, ensure
business continuity for our clients, and contribute to a safe computing

environment for all

We deliver a comprehensive security lineup, including proven, world-
class antivirus products for desktops and servers, mobile security
products, online transaction security products, network security

appliances, and consulting services.

AhnLab has firmly established its market position and manages sales

partners in many countries worldwide.

AhnlLab

Copyright (C) AhnLab, Inc. 1988-2013. All rights reserved.

27

